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ABSTRACT 

We study closed smooth convex plane curves F enjoying the following 

property: a pair of points x, y can traverse F so that the distances between 

x and y along the curve and in the ambient plane do not change; such 

curves are called b icyc le  curves .  Motivation for this study comes from 

the problem how to determine the direction of the bicycle motion by tile 

tire tracks of the bicycle wheels; bicycle curves arise in the (rare) situation 

when one cannot determine which way the bicycle went. 

We discuss existence and non-existence of bicycle curves, other than 

circles; in particular, we obtain restrictions on bicycle curves in terms 

of the ratio of the length of the arc xy to the perimeter length of I', 

the number and location of their vertices, etc. We also study polygonal 

analogs of bicycle curves, convex equilateral n-gons P whose k-diagonals 

all have equal lengths. For some values of n and k we prove the rigidity 

result that P is a regular polygon, and for some we construct flexible 
bicycle polygons. 

1. In troduct ion  and out l ine  of  results  

The motivation for what follows comes from the question: "Which way did the 

bicycle go?" A bicycle leaves two tire tracks on the ground, those of the front 

and tile rear wheels, and the problem is to determine from this pair of curves the 

direction of tile motion. See [8] for a discussion of the problem and, in particular, 

a criticism of Sherh)ck Hohnes' approach to it in "The Priory School" mystery. 

See also [3, 4, 5] for various aspects of tire track geometry. 

* Partially supported by an NSF grant. 
Received June 3, 2004 
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Following [8], we use the next mathematical model for bicycle motion. The 

bicycle is represented by an oriented segment of fixed length, say L, whose end 

points are the tangency points of the rear and front wheels with the ground. 

In the process of motion the end points traverse smooth plane curves and the 

segment always remains tangent to the trajectory of its rear end point. Let 7(t) 

and F(t) be trajectories of the rear and front wheels and let T(t) denote the 

unit tangent vector to the curve % Then 

(1) r ( t )  = 7(t) + LT(t) 

Following D. Finn [5], a pair of curves 7 and F is called a m b i g u o u s  if they 

can serve the trajectories of the rear and front bicycle wheels when traversed in 

the two opposite directions. Thus one cannot determine from this pair of tracks 

which way the bicycle went. If (7, F) is an ambiguous pair and a segment of 

length 2L is tangent to 7 at its midpoint, then both end points of the segment 

lie on F; see Figure 1 /  An obvious example of ambiguous curves is a pair of 

concentric circles whose radii r and R satisfy R 2 - r 2 = L 2. 

The first problem discussed in the present paper is as follows. 

PROBLEM ]: To describe and study ambiguous pairs of dosed smooth con- 

vex plane curves (% F) where F is convex. In particular, do there exist such 

ambiguous pairs, other than concentric circles? 

One can ask the above question omitting the convexity assumption on F; it 

appears, however, that  even this restricted version is quite interesting. Problem 

1 can also be posed in geometries, other than Euclidean, say, in the hyperbolic 

plane or the sphere; one can also ask a similar question in multi-dimensional 

setting. 

Let (% F) be an ambiguous pair of curves. We show below in Corollary 2.5 

that,  as the segment xy in Figure 1 moves around the curve 7, the length of the 

arc xy of the curve F remains the same. Thus F has the following property: a 

pair of points x , y  can traverse the curve so that the distances between x and 

y along the curve and in the plane do not change. We will call such curves 

b i cyc le  curves .  The ratio of the length of the arc xy to the perimeter length 

of F is called the r o t a t i o n  n u m b e r  of a bicycle curve and is denoted by p. We 

1 Let us mention a connection to dual billiards: P is an invariant curve of the dual 
billiard map around "),; see, e.g., [t0] concerning the dual billiard problem. 
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always assume ttmt the perimeter length of a bicycle curve is 2n. 

Figure 1. Ambiguous pair of curves 

Our second problem is as follows. 

PROBLEM 2: To describe and study closed smooth convex plane bicycle curves. 

In particular, what are possible values of tile rotation number for non-circular 

smooth convex plane bicycle era'yes? 

Similarly to Problem 1, tile questions make sense in other geometries and in 

multi-dimensional setups. 

Problem 2 is more general than Problem 1. Let F be a plane bicycle curve. 

Then the curve ? can be recovered as the envelope of the lines xy. However, this 

envelope does not have to be smooth: it may have cusp singularities; see Figure 

2. Such singular curves (called wave fronts) still have a well defined tangent line 

at every point. Ill fact, a bicycle can move in such a way that the tire track of 

tile rear wheel is a wave front, as in Figure 2. 

In higher dimensions, tile discrepancy between Problems 1 and 2 gets greater: 

if F is a bicycle curve in, say, 3-dimensional space, then the lines xy may not be 
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tangent  to a space curve, and the curve 7 will not exist at all. 

Figure 2. Inner curve is a wave front 

Isr. J. Math. 

We also consider polygonal versions of the bicycle curves. Let P be an n- 

gon, and let VIV2 . . .  Vn be its consecutive vertices. We understand the indices 

cyclically, so that  V,~+I = V1, etc. A k-diagonal is the segment V/V/+k for some 

i = 1 , . . . ,  n. Let 2 _< k _< n/2.  Call P a b i cyc le  (n, k ) -gon  if it is equilateral, 

tha t  is, all its sides are equal, and all its k diagonals are also equal to each other. 

An example of a bicycle (n, k)-gon is a regular n-gon. The ratio k/n will be also 

called the rotat ion number. 

The third problem discussed in the paper  is as follows. 

PROBLEM 3: To describe and study convex plane bicycle polygons. In particu- 
lar, for which n and k are there bicycle (n, k)-gons, other than regular n-gons? 

Once again, one may ask similar questions for non-convex polygons, for poly- 

gons in multi-dimensional spaces and in geometries, other than Euclidean. 

Our results are very far from definitive, and one of the main goals of this 

paper  is to a t t rac t  at tention to Problems 1-3. 

In Section 3, we construct examples of smooth convex plane bicycle curves 

with the rotat ion number p = 1/2. There is a functional space of such curves 

which, in a sense, are analogous to curves of constant width. We do not know 

whether there exists a non-circular smooth convex plane bicycle curve with the 

rotat ion number  other than 1/2. 
Section 4 provides restrictions on a smooth convex plane bicycle curve F in 

terms of its vertices (i.e., local max ima  or minima of curvature). Let the rotat ion 
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number of F be p. Then Theorem 3 states that  every segment of F of length 

2~p contains a vertex, and Theorem 4 asserts that  the number of vertices of F 

is not less than 6. Recall that,  by the celebrated 4-vertex theorem (see, e.g., 

[6]), every simple closed smooth plane curve has at least 4 vertices. We also give 

restrictions on the rotation number of a smooth convex plane bicycle curve F: 

Theorems 5 and 6 assert that  if p = 1/3 or p = 1/4 then F is a circle. 

Section 5 is devoted to infinitesimal deformations of the circle in the class of 

smooth convex plane bicycle curves. Theorem 7 describes an interesting mode- 

locking phenomenon: the unit circle has a non-trivial infinitesimal deformation 

as a bicycle curve with rotation number p if and only if 

(2) n tan(~rp) = tan(n~p) 

for some n >_ 2. In Section 6, we also describe infinitesimal deformations of the 

bicycle curves with the rotation number 1/2 constructed in Section 3. 

Section 7 concerns bicycle polygons. Theorem 9 gives rigidity results: convex 

plane bicycle (n, 2)-gons, (2n + 1, 3)-gons, (2n + 1, n)-gons and (3n, n)-gons are 

regular. On the other hand, Theorem 10 provides a 1-parameter family of non- 

regular convex bicycle (2n, k)-gons where k _< n is odd. 

In Section 8, we describe infinitesimal deformations of regular polygons in 

the class of bicycle polygons. Theorem 11 asserts that  a regular n-gon admits 

a non-trivial infinitesimal deformation as a bicycle (n, k)-gon if and only if 

7r 

for some 2 < r < n - 2. This is a n  analog of equation (2). 

Finally, let us mention two papers in which somewhat similar problems are 

discussed. 

In [9], the following situation is considered. Let F be a closed convex plane 

curve such that  two points x, y can traverse F so that  the distance Ixy[ and the 

angle a between xy and the tangent line TxF remain the same. The main result 

of [9] is that  if a r 7f/2 then F must be a circle. For a = ~/2, rigidity does not 

hold: F can be a curve of constant width. 

The situation considered in [7] is as follows: F is a smooth convex closed plane 

curve such that  two points x, y can traverse F so that  the angles between xy 
and the tangent lines TxF and T~F are both equal to a constant ~p. The main 

result of [7] (see also [10]) is that  there exists such a curve, other than a circle, 

if and only if equation (2) holds. If the angle is equal to r / 2  then F is again a 

curve of constant width. 
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Bicycle curves considered here, and the curves studied in [9] and [7], give 

rise, via duality, to three other classes of smooth convex curves of interest. The 

precise notion of duality is the spherical one, namely, the correspondence "pole- 

equator" between points of the unit sphere and oriented great circles (see, e.g., 

[2] or [10]). If x and y are two points and a and b are tile corresponding great 

circles, then the spherical distance between x and y equals the angle between a 

and b. As usual, the duality extends from points and lines to smooth curves. 

1-" 

Y 

X 

d~=const 

F* 

Figure 3. Bicycle curve and its dual curve 

A curve F, dual to a bicycle curve, has the following property: a pair of points 

% y can traverse F so that the distance between x and y along tile curve and 

the angle between the tangent lines TxF and TyF do not change; see Figure 3. 

Likewise, the curves F, dual to the curves studied in [7], are characterized by the 

property: a pair of points x, y can traverse F so that the distances from points 

x and y to the intersection point of the tangent lines TxF and TyF remain equal 

to the same constant. Finally, the curves F, dual to the curves studied in [9], are 

characterized by the property: a pair of points x, y can traverse F so that  the 

distance from point x to the intersection point of tile tangent lines TzF and TuF 

and the angle between these tangent lines do not change. A common example 

for all three classes is, of course, a circle; are there other examples? These three 

classes of curves can be defined in geometries, other than the spherical one, for 

example, in the Euclidean plane, and their study is an interesting problem. 

ACKNOWLEDGEMENT: I was introduced to tire track geometry by S. Wagon. 

I have benefited from discussions with M. Bialy, R. Connelly, V. Cyr, D. Genin, 
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M. Ghomi, E. Gutkin, M. Levi, L. Montejano, A. Petrunin, D. Vaintrob; I a~n 

grateful to them all. 

2. Formulae  for  c u r v a t u r e  

Consider two smooth curves ~y and F related as in (1). Let t and x be the arc 

length parameters on "), and F, respectively; the correspondence between the 

two curves is given by 

(3) r(x(t)) = + L t(t). 

Let k and tr be the curvatures of ~/and F. Denote by a( t )  the angle between 

the tangent vectors to the curves at the respective points 7(t) and F(x(t)) .  

LEMMA 2.1: One has 

7~ 7~ dx 1 tan a 
- - - -  - -  k - -  

2 < a(t)  < ~,  dt c o s a '  L 

and 

(4) 

Proof: 

sin a da 

a -  L +~xx �9 
Since t is the arc length parameter  on 7, the vector 7tt has magnitude 

k and is orthogonal to 7t. Differentiating (3), one finds 

(5) Ft = ?t + L'~tt, 

and hence Ft �9 ~/t = 1. It follows that  cos (~(t) > 0 for all t. It also follows from 

(5) that  

(6) 1 - I F t l = ~ / l + L 2 k 2 ;  
COS O~ 

hence Lk = t a n a  and dx/d t  = 1 / c o s a .  

One has 

F t X Ftt 
(7) = 

]r P 

Since t is the arc length parameter on % one has "/ttt= (kt/k)"/tt - k2~t. Differ- 

entiating (5), one finds F t t =  "/tt + L(kt/k)"/tt  - Lk27t. Substitute into (7) and 

use ~/t x "/tt= k to obtain 

k + Lkt + L2k 3 s ina  s ina  
(8) t~ = (1 + L2k2)3/2 = L + at cosa  = L + ax. 

This completes the proof. | 



8 s. TABACHNIKOV Isr. J. Math. 

Remark 2.2: As we ment ioned  in In t roduct ion ,  one needs to consider a wider 

class of curves % namely,  wave fronts. The  direction of 9' changes to the oppos i te  

in a cusp; the curva ture  k at  a cusp becomes infinite and changes sign. At a 

cusp point ,  a = 4-7r/2, and formula  (4) still holds. 

Let  3, and F be closed rear  and front  bicycle t ire tracks,  t ha t  is, closed smooth  

curves re la ted by (3). L e m m a  2.1 implies t ha t  the rear  t rack  is always shor ter  

t han  the  front  one. 

COROLLARY 2.3: One has 

0 < length F - length 9" < L i Ik[dt" 

In particular, i f  9" is convex then 

Proof." One has 

length F - length 9' < 27rL. 

0 ~_ V/I + L2k 2 - 1 ~ _  LIk I. 

In tegra te ,  using (6), to ob ta in  non-s t r ic t  inequalities. Since [kl > 0 on an open 

interval,  bo th  inequalit ies are strict .  For a convex curve, k _> 0 and f kdt = 27r. 
| 

T h e  difference between the  lengths of the rear  and front t ire t racks  m a y  be 

a rb i t r a r i ly  small: if 9' is a circle of radius  R then  

length F - length') ,  = 2zr(vf-R --~ + L 2 - R) < 7cL2/R, 

which is small  for large R. 

Now consider the  curve F = 9' - Lg't, and let ~(t)  be the  angle between the  

t angen t  vectors  to 3, and  F a t  the  respect ive points.  Up to or ienta t ion reversing, 

is the  t r a j ec to ry  of the  front  wheel when the  rear  one t raverses  7 in the 

oppos i te  direction; see Figure  4. 

LEMMA 2.4: One has [Ft[ = [Ft[ and/~(t) = a(t). The orientation of the frames 

(Ft,  9't) and (9"t, Ft) coincide. The curvature o f f  is given by the formula 

sin a da 
(9) n - - -  

L dx'  

where x is the arc  length parameter on f'. 
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F 

Figure 4. Curves F and 

Proof: The computations of Lemma 2.1, with L replaced by - L ,  yield the 

formula for IFtl. Next, r't = "rt - L"/tt, therefore f't �9 "Yt = 1, and hence cosfl = 

cos a. On the other hand, Yt x Ft = -'Yt x Ft, whence the statement concerning 

the orientations. The computation of n proceeds as in Lemina 2.1, with a 

replaced by - a ,  reflecting the orientation, mid L by - L .  | 

Now let (% F) be an ambiguous pair of curves; then the curves F and r' 

coincide. Let x = "~ - LTt and y = "), + L"/t. One has the following corollary of 

Lemma 2.4. 

COROLLARY 2.5: The distance between points  x and y along the curve F 

remains constant  and the segment  x y  makes  equal angles with  F. 

Let F(x) be a smooth convex bicycle curve with the rotation number p and 

the chord of length 2L, paramcterized by arc length. Set w = n p .  Then the 

length of the arc of F subtended by each chord of length 2L equals 2w. 2 As 

before, let a(x)  be the angle between the segment F(x)F(x + 2w) and the curve 

F at points F(x) and F(x + 2w) (the angles are equal by Lemma 2.5). 

THEOREM 1: For e v e r y x  E [0,2hi, one has 

(10) s ina (x  + w) - sin o~(x - w) = L ( a ' ( x  + w) + a ' ( x  - w)).  

2 One has L < sinw, with equality only for a circle. This follows from [l] where 
it is proved that the average length of tile chord subtended by an arc of a fixed 
length is not greater than that for a circle. 
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Proof: 

a r e  

(11) 
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By Lemmas 2.4 and 2.1, the curvatures o fF  at points F(x) and F(x+2w) 

~ ( x ) -  sina(x)L a '(x),  t c ( x + 2 w ) -  ~sina(x) + a '(x),  

where prime denotes d/dx.  Combining these formulas and shifting x by w yields 

(10). 

Alternatively, compute the total curvature of the arc F(x)F(x + 2w). On the 

one hand, the total turn of this arc is 2a(x); on the other hand, due to (9), it 

is equal to 

Hence 

f x+2w 1 f x+ew 
k ( T ) d 7  = $ J x sin a ( 7 ) d T  -- a ( x  + 2w) + a ( x ) .  

f 
xW2w 

L(a (x  + 2w) + a(x))  = sina(v),  
.-'2: 

and (10) follows by differentiation. | 

By equation (4), a constant solution to (10) corresponds to the unit circle. 

We are led to the following problem. 

PROBLEM 4: To describe smooth functions a(x) on the circle R/2~rZ satisfying 

equation (10). 

3. C o n s t r u c t i n g  bicycle  curves  w i t h  the rotation number 1 /2  

Consider an oriented segment of a fixed length 2L in a Euclidean space, charac- 

terized by its midpoint x and the unit vector along the segment v. Let x(t), v(t) 

be smooth functions describing motion of the segment. 

LEMMA 3.1: The endpoints of  the segment have equal speeds i f  and only i f  

x ~ . v  ~ = O. In thep lanecase ,  x t . v  ~ = O i f a n d o n l y i f e i t h e r v  ~ = 0 o r x  ~is 

collinear with v. 

Proof: The endpoints are the vectors x -4- Lv and their velocities are x ~ :k Lvq 

These two vectors have equal magnitudes if and only if x ~ �9 v' = 0. Since v is a 

unit vector, v ~ �9 v -- 0. Thus x ~ and v are perpendicular to v~; if v ~ ~ 0 then, in 

the plane case, x t and v are collinear. | 
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COROLLARY 3.2: / f  a segment of a fixed length is moving in the plane with 

non-zero angular speed in such a way that its endpoints have equal speeds, then 

it remains tangent to the trajectory of its midpoint. 

Proof: Since the angular speed does not vanish, v' ~ 0. Hence x' and v are 

collinear, as claimed. 1 

The envelope 7 of the moving segments, i.e., the t rajectory of its midpoint, 

may have singularities, that  is, be a wave front. 

We are ready to construct a convex smooth plane closed bicycle curve F with 

the rotation number 1/2. The chords of F bisecting the perimeter will have a 

fixed length and envelop a wave front V. In terms of the bicycle problem, F is 

the tire track of the front and ? that  of the rear wheel. 

Figure 5. Bicycle curve with the rotation number 1/2 

THEOREM 2: Let 7 be a dosed plane front with an odd number of cusps, total 

rotation 7r and without inflections (see Figure 5). Let the midpoint of a segment 

of length 2L traverse 7 so that the segment remains tangent to 7. Then, for L 

large enough, the endpoints of the segment traverse a convex bicycle curve F. 

Proof: When the midpoint of the segment traverses 7, its endpoints describe 

one half of the curve F each. Since the total rotation of 7 is ~, these two halves 
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join smoothly to make a closed curve F. By Lemma 3.1, the endpoints move 

with equal speeds, and hence the segment bisects the perimeter length of F. 

To prove that,  for L large enough, F is convex, let us, instead of increasing 

L, rescale 7 by a small factor A. The curvature of "y and its derivative with 

respect to the arc length parameter  scale as follows: k ~ A-lk,  kt ~ A-2kt. By 

formula (8), the curvature n of F scales as follows: 

(12) k + Lkt + L2k 3 ~ ~ - l k  + A-2Lkt + A-3L2k 3 = ~2k + )~Lkt + L2k 3 
(1 + L2k2)3/2 (1 + A-2L2k2)3/2 (A 2 + L2k2)3/2 

Since 7 has no inflections, k ~ 0, and (12) tends to 1/L as )~ -~ 0. Therefore, 

for ~ small enough, (12) is positive. | 

Remark 3.3: Conversely, it is easy to show that  the envelope of the segments 

that  bisect the perimeter length of a smooth closed convex plane curve has total 

rotation 7r, an odd number of cusps and no inflections. 

Remark 3.4: The functions a(x) ,  corresponding to the curves of Theorem 2, 

satisfy (~(x-Tc/2)+a(x+Tr/2) = 7r. Such functions provide solutions to equation 

(10) with ca = 7r/2 and arbitrary L. 

4. R e s t r i c t i o n s  on  t h e  n u m b e r  o f  v e r t i c e s  and  on  t h e  r o t a t i o n  n u m b e r  

Assume that  F is a smooth closed convex plane bicycle curve. The next result 

shows that  if F is not a circle, then the rotation number p cannot be too small. 

We continue to use the same notation as above, in particular, w = ~rp. 

THEOREM 3: Every segment o f f  of length 2w contains a vertex. 

Proof: Assume that  an arc from r ( x - w )  to F(x + w) has a non-decreasing and 

non-constant curvature. By a Vogt theorem [6], the angle made by the segment 

F(x - w)F(x + w) with the curve F at point F(x - w) is less than that  at point 

F(x + w). This contradicts Lemma 2.4. | 

Thus 27rp is not smaller than the maximal distance between consecutive ver- 

tices along F. Here is another restriction on a bicycle curve F in terms of 

vertices. 

THEOREM 4: F has at least 6 vertices. 

Proof: Let x be a critical point of the function a. By formulas (11), the 

curvatures at points F(x) and F(x + 2w) are equal. Moreover, it follows from 



Vol. 151, 2006 TIRE TRACK GEOMETRY: VARIATIONS ON A THEME 13 

elementary geometry that the centers of curvature at these points coincide; see 

Figure 6. Thus the circles of curvature at two distinct points of F coincide. By 

a Fabricius-Bjerre theorem [6], F has at least 6 vertices. II 

r (x  + 2o3) ct ct r(x) 

Figure 6. Centers of curvature at F(x) and F(x + 2w) coincide 

Recall that Theorem 2 provides a variety of bicycle curves with the rotation 

number 1/2. In contrast, we have the next two results. 

THEOREM 5: If the rotation number equals 1/3 then F is a circle. 

Proof: For every x e [0, 27r], the triangle r ( x ) r ( x  + 27r/3)F(x + 47r/3) is equi- 

lateral. Let a(x), a(x + 27r/3), a(x + 47r/3) be the respective angles between the 

chords and the curve F. The total rotation angle of F is 

hence 

2(c~(x) + ~(x + 27r/3) + (~(x + 47~/3)) = 27r, 

c~(x) + ~(x + 27r/3) + c~(x + 47r/3) = ~r. 

On the other hand, 

~(x) + c~(x + 27r/3) = 27r/3, 

since the angles c~(x) and ~(x + 27r/3) sum up to 7r with an interior angle of an 

equilateral triangle. Likewise, 

a (x  + 27r/3) + a(z + 47r/3) = 27r/3, a(x + 47r/3) + a(x)  = 27r/3, 

therefore a(x) = 7r/3 for all x. It follows from formula (4) that  the curvature of 

F is constant, thus it is a circle. 1 
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THEOREM 6: If  the rotation number equals 1/4 then F is a circle. 

Proof: For every x, the quadrilateral F(x)F(x + zr/2)F(x + 7r)F(x + 37r/2) is a 

rhombus. Let a(x), a(x + 7r/2), a(x + ~), a(x + 37~/2) be the respective angles 

between the chords and the curve F. As before, 

2(a(x) + a(x  + 7r/2) + a(x  + 7r) + a(x + 37r/2)) = 27r. 

Since the opposite angles of a rhombus are equal, one has 

a(x) + a(x + 7r/2) = a(x  + 7r) + a(x  + 37r/2) 

and 

. ( x  + ~/2) + ~(x + ~) = ~(x + 3~/2) + .(x). 

It follows that  

(13) ~(.) + ~(x + . /2)  = . /2 ,  

and hence the rhombus is a square. Therefore, the right hand side of equation 

(10) vanishes, and hence sina(x+7~/2) = sina(x).  In view of (13), a(x) = 7r/4, 
and by formula (4), F is a circle. | 

5. I n f in i t e s ima l  d e f o r m a t i o n s  of  a circle: m o d e  locking 

Consider a bicycle curve obtained from a circle by an infinitesimal deformation. 

THEOREM 7: The unit circle admits a non-trivial infinitesimal deformation as 

a smooth closed plane bicycle curve of perimeter 2zr and rotation number p if 

and only if p is a root of the equation 

(14) n tan(7~p) = tan(n~rp) 

for some integer n > 2. 

Proof: Let Fo(x) = (cosx, sinx) be the unit circle and v(x) be a vector field 

along Fo. Consider the infinitesimal deformation F(x) = Fo(x) + Ev(x), and let 

it be arc length parameterized as well. Since F'(x) = F~(x) + ~v'(x), arc length 

parameterization is equivalent to F~(x).v'(x) = 0 for all x. Thus ( -  sin x, cos x). 

v'(x) = 0. It follows that  v'(x) = g(x)(cosx, sinx) for some function g. Note 

tha t  

~o 2~ v' (x)dx = O, 
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hence g(x) is orthogonal to the first harmonics. The differential operator  1 + d 2 

"kills" the first harmonics and is a linear isomorphism on the space spanned 

by all other harmonics. Hence g(x) = f ( x )  + f"(x)  for some function f .  Since 

1 + d 2 annihilates the first harmonics, we assume, without loss of generality, 

that  .f(x) is orthogonal to the first harmonics as well. 

One has 

v(x) = ( l (r)  + /" ( r ) ) ( cosr ,  sinr)dT, 

and integration by parts twice gives 

(15) v(x) = ( f(x)  sin x + f ' (x)  cos x + C l , - f ( x )  cos x + f ' (x)  sin x + c2). 

After a parallel translation, one may set cl = c2 = 0. Note also that  if f is a 

constant, then the corresponding deformation v is an infinitesimal rotation of 

the circle. Thus, without loss of generality, we assume that  f has zero average. 

The lengths of the arcs subtended by the chords of F of constant length is 

2w = 27rp. Let this chord length be L = 2(sinw + ec). Then 

IF(x +w)  - F ( x -  w)l = 2(sinw +r  

which is equivalent to 

( r 0 ( x  + - r o ( x  - ( v ( x  + - v(x - = 4 c s i n w .  

A direct computation using (15) yields 

( f ' ( x  + w) + f ' ( x  - w)) sinco - ( f ( x  + w) - f ( x  - w)) cosw = 2c: 

The left hand side has zero integral over [0, 2~r], hence c = 0. One obtains 

( f ' (x  +w) + f ' ( x -  w))sinw = ( f ( x  +w) - f ( x - w ) ) c o s w .  (16) 

Let 

f ( r  = E aneinr ~ = a-n 
InL>2 

be the Fourier expansion of f .  Equation (16) is equivalent to 

(17) an(n cos(nw) sinw - cosw sin(nw)) = 0 

for all n > 2. Tile Fourier coefficient an may be non-zero only if 

n cos(nw) sin w = cos w sin(nw), 
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which is equivalent to (14). 

Conversely, if (14) holds for some n _> 2, one may choose f (x)  to be a pure n- 

th harmonic, say sin(nx). Then the infinitesimal deformation of the unit circle 

given by (15) is a bicycle curve. | 

Remark 5.1: Similarly, one may consider infinitesimal deformations of the con- 

stant solution a(x)  = w with L = sinw of equation (10). Such a deformation 

exists also if and only if 

(18) n tan w = tan(nw) 

for some n > 1. This does not exclude n = 1, in which case (18) trivially holds 

for all w. Indeed, a constant solution of equation (1) admits infinitesimal defor- 

mations by the first harmonics; however, such deformations do not correspond 

to closed plane curves. 

Remark 5.2: It was shown by V. Cyr that  equation (14) has no rational roots 

p E Q; in particular, neither p = 1/3 nor p = 1/4 satisfy (14); cf. Theorems 5 

and 6. Equation (14) has solutions for infinitely many values of n. The smallest 

is n = 4 for which p -- arctan(x/~)/~r. 

Remark 5.3: Note that  the roots of equation (18) are the critical points of the 

function sin(nx)/sin x. 

6. I n f i n i t e s i m a l  d e f o r m a t i o n s  o f  b icyc le  cu rv e s  w i th  r o t a t i o n  n u m b e r  

1 / 2  

Consider a solution of equation (10) satisfying c~(x + 7c) -- ~ - c~(x); such 

a solution corresponds to a bicycle curve from Theorem 2 with the rotation 

number 1/2. Write ~(x) = ~/2  +/7(x);  then /7 is an odd function. In this 

section we study infinitesimal deformations of such solutions. 

As the parameter  of deformation, we use the change in the rotation number; 

more precisely, let p = 1 / 2 -  ~/~. Then w = 7 r / 2 -  c. Let the deformed function 

be/7(x) + ~f(x). Without loss of generality, assume that  f is an even function 

(the odd part  of f does not change the rotation number and can be incorporated 

into/7). Let the deformed half-length of the chord be L + el. 

THEOREM 8: There exists an infinitesimal deformation as above if and only if 

the function fl(x) satisfies the differential equation 

(19) L2/~ '' = (C - cosfl) sin/7, 
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where L is as in (10), C is a constant, and the respective function f ( x )  is given 

L f  = C - cos~. 

Let x+ stand for x + 7r/2. Then equation (10) can be rewritten as 

cos(/~(x+ - ~) + ~ : ( x +  - c)) - cos(t~(x_ + ~) + E : ( x _  + ~)) 
(21) 

= (L + ~l)(/3'(z+ - ~) + e.I'(x+ - ~) + 3 ' ( x -  + c) + EI'(x_ + c)). 

We compute modulo ~2. Then 

cos(/3(x+ - c) + r  - ~)) = cosl3(x+) + c(13'(/+) - f (x+))s in /3(x+)  

and 

cos(13(x- + e) + r  + ~)) = cos/3(x_) - r + f ( x _ ) )  sinfl(x_).  

One also has 

~' (x+  - ~) = ~ ' (x+)  - e~"(x+) ,  ~ ' (x_  + ~) = ;~'(x_) + ~/3"(x_).  

Recall tha t /3  is an odd and f is an even function, hence f l (x_)  = - /3(x+) and 

f ( x _ )  = f (x+) .  Substitute into (21) and equate the terms, linear in z, to obtain 

(22) (fl'(x) - f ( x ) ) s i n f l ( x )  = L ( f ' ( x )  - ~ " ( x ) ) ,  

where we replaced x+ simply by x. Equate even and odd parts in (22): 

(23) /3' sin/3 = L]' ,  .f sin/3 = L~".  

The first equation in (23) implies L f  = C - cos 9. Substitute ] into the second 

equation in (23) to obtain the differential equation (19) on/3. II 

Remark 6.1: Equation (19) can be solved in elliptic integrals; we do not dwell 

on this. 

Theorem 8 implies that the bicycle curves from Theorem 2 with the rotation 

number 1/2 almost never admit infinitesimal deformations changing the rotation 

number. In particular, one has the following corollary. 

by 

(20) 

Proof: 
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COROLLARY 6.2: Consider a circle as a bicycle curve with the rotation number 

1/2. Then its every infinitesimal deformation changing the rotation number 

yields also a circle. 

Proof." For a circle, fl(x) _ 0. It follows from (20) that f ( x )  is constant. By 

(4), the curvature of the deformed curve is also constant, therefore it is a circle. 

II 

7. Bicyc le  po lygons  

We start with a polygonal analog of Lemma 3.1. 

LEMMA 7.1: Let P be a plane bicycle (n, k)-gon. Then, for every i, either 

the vectors V~+I - Vi and V~+k+l - V/+k are equal, and then the quadrilateral 

~Vi+lV/+kV~+k+l is a parallelogram, or the quadrilateral ViV~+l Vi+k Vi+k+l is 

an isosceles trapezoid with the parallel sides ViVi+k+l and Vi+l Vi+k . I f  P is 

convex then only the latter case is possible. 

Proof: The triangles V~Vi+I V/+k and V/+I V./+k~/i+k+l are congruent since they 

have equal corresponding sides, If the segments ViVi+k and Vi+l Vi+k+l do not 

intersect then one has the first case of the lemma, and if they do one has the 

second case; see Figure 7. Clearly, only the latter agrees with convexity of the 

polygon. II 

v/ 

Y/+k 

vi 

V'+k+ l 

Figure 7. Two cases in Lemma 7.1 

The next theorem provides some rigidity results on convex bicycle polygons. 
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THEOREM 9: 

(1) 
(2) 
(3) 
(4) 
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In the following cases every convex bicycle (n, k )-gon is regular: 

n arbitraly and k = 2; 

n odd and k = 3; 

k arbitrary and n = 2k + 1; 

k arbitrary and n = 3k. 

V/+2 
V ~ +  1 

Vi+4 V i 

Figure 8. Case of (n, 3)-gon 

Proof'. If k = 2 then the triangles ViV/+IVi+2 are congruent for all i, and 

therefore all angles of the polygon P are equal. Hence P is regular. 

Let k = 3. Consider 5 consecutive vertices of P.  Lemma 7.1 implies tha t  the 

pentagon V/Vi+I Vi+2V/+3V/+~ has an axis of symmetry passing through vertex 

V~+2; see Figure 8. It follows that  the angles at vertices Vi+l and V/+a are equal. 

This holds for all i = 1 , . . . ,  n. If n is odd, this implies that  all angles are equal, 

and hence P is regular. 

Let n = 2k + 1. Then the triangles Vi-lViVi+k are congruent for all i: two 

of their sides are k-diagonals and the base is a side of the polygon P.  Let a 

be the angle at the base of this triangle. The vertices V/-I, Vi, V~+I, Vi+k and 

V/+k+l span three such triangles, and the angle Vi-IViV/+I is equal to 4c~ - 7r; 

see Figure 9. Thus all angles of P are equal and P is regular. 

Finally, consider the case of n = 3k. We need the following lemma. 

LEMMA 7.2: Given two congruent equally oriented equilaterM triangles such 

that the distances between the corresponding vertices are equM, one is obtained 

from another either by a parallel translation or by a rotation about its center. 
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vi 
V/ "1  

Vi+k l~+k+l 

Figure 9. Case of (2k + 1, k)-gon 

Proof." Identify the plane with C and assume, without loss of generality, that  

the first triangle is (1, q, q2), where q is a cube root of 1. The motion that  takes 

the 1-st triangle to the 2-nd is given by z ~ uz + v, where [u] = 1. Then one 

has 

l i t -  1 + v I = l u q -  q + v] = ]uq 2 - q2 + v], 

and hence (1 - u) is equidistant from the points v, qv, q2v. Either v = 0, an(t 

the motion is a rotat ion about  the origin, or 1 - u = 0, and the motion is a 

parallel translation. | 

Now we will apply Lemma 7.2 to a bicycle 3k-gon P. Each triangle 

V~Vi+kVi+2k is equilateral. Consider the triangle Vi+l1�88 By 

Lemma 7.2 and since P is convex, the second triangle is obtained from the 

first by a rotat ion about  its center. For all i, these rotations have a common 

center and equal angles since the sides of P are all equal. It  follows that  P is a 

regular polygon. | 

Remark 7.3: The last case of Theorem 9 can be viewed as a polygonal analog 

of Theorem 5. 

Remark 7.4: If one relaxes the convexity condition on P,  then rigidity in 

Theorem 9 does not hold anymore. For example, consider a closed n-gon on 
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graph paper with unit sides and all right angles. Clearly, there is an abundance 

of such polygons and they are bicycle (n, 2)-gons since their 2-diagonals have 

length x/~; see Figure 10. 

I I 
I i 

I I 
I II  i 

Figure 10. Nonconvex bicycle (n, 2)-gon 

Next we provide some examples of flexible convex bicycle polygons. 

THEOREM 10: _For k odd and n even, there exists a/-parameter  family of non- 
congruent bicycle (n, k )-gons. 

Proof: Start with a regular n/2-gon. Attach to all sides congruent isosceles 
triangles to obtain an n-gon with equal sides; the altitude of the triangles is a 

parameter of the construction. For every odd k <_ n/2, the resulting polygon 

is a bicycle (n, k)-gon since all k-diagonals are congruent by a symmetry of the 

original regular n/2-gon; see Figure 11 for (6, 3)- and (8, 3)-gons. | 

(6,3) (8,3) 

Figure 11. Flexible bicycle polygons 

Remark 7.5: Bicycle polygons of Theorem 10 may have the rotation number 

1/4. Thus there is no polygonal analog of Theorem 6. 
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Remark 7.6: Let P be a convex plane bicycle (2n, n)-gon. According to Lemma 

7.1, ViVi+lVi+nVi+n+l is an isosceles trapezoid. Consider the circumscribed 

circle of this trapezoid and replace the sides ViV/+I and Vi+nVi+n+l by arcs of 

this circle; see Figure 12. After this is done for all i, one obtains a piece-wise 

circular bicycle curve with the rotation number 1/2. Unless P is regular, this 

curve is not differentiable; if P is regular, the curve is a circle. This construction 

is due to A. Petrunin. 

~ + k + l  [ -"") V/ 

Figure 12. Rotating chord within one trapezoid 

Remark 7. 7: Up to isometries of the plane, the space of n-gons with unit sides 

is (n - 3)-dimensional. If k < n/2,  then the condition that  all k-diagonals 

are equal provides n - 1 relations, and one has an overdetermined system of 

equations. However, if k = n/2, then there are only n/2 - 1 relations and one 

expects a variety of bicycle (2k, k)-gons. 

8. I n f i n i t e s ima l  d e f o r m a t i o n s  o f  r egu la r  po lygons  

This section is a polygonal analog of Section 5: we consider infinitesimal 

deformations of regular polygons in the class of bicycle polygons. The main 

result is as follows. 

THEOREM 11: A regular n-gon admits a non-trivial infinitesimal deformation 

as a bicycle (n, k)-gon if  and only i f  

( (24) tan kr tan n = t a n  k tan r n 

for some 2 < r < n -  2. 

Proof'. It will be convenient to denote the angle 7r/n by r Consider a regular 

n-gon P whose vertices are 

= (cos(2i ),sin(2i )), i = O , . . . , n -  1. 
\ 2  
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An infinitesimal deformation of P is given by a collection of vectors Us so that  the 

vertices of the deformed polygon P~ are Vi +eUi.  As usual, all the computations 

are modulo e2, and the indices are understood cyclically. 

The polygon P~ has unit sides 

IVi+l - Vi + e(Ui+l - Ui)l = 1 

for all i = 0 , . . .  ,n  - 1, which is equivalent to 

(V/+ 1 - V / ) .  ( g i + l  - g i )  = O. 

Since 

one has 

Y/+ 1 - -  V /  ~-- 2 sin r  + 1)r cos((2i + 1)r 

Ui-t-1 - -  U i  = t i(cos((2i + 1)r + 1)r 

for some real ti. Set 

Then 

(25) 

and 

(26) 

Wi = (cos((2i + 1)r sin((2i + 1)r 

U i = U o + t o W o + t l W l + ' " + t i - l W i - 1 ,  i = O , . . . , n - 1  

n - I  

t iWi  = O. 
i~O 

Note that  adding the same vector to all Us amounts to parallel translating P. 

Therefore, we may factor out parallel translations by assuming that  Uo = 0. 

We can also factor out rotations about the origin. To this end, note that  for 

an infinitesimal rotation, 

Us = c ( -  sin(2ir cos(2ir 

where c is a constant, and therefore 

Ui+l - -  U i - ~  C(cos((2i + 1)r + 1)r 

where C is another constant. Hence the rotations correspond to to = tl = . . . .  

tn-1 in (25). To factor the rotations out we assume that  

n--1 

(27) Z ti : 0. 
i=O 
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Next, we consider the condition that  all k-diagonals of P~ 

before, this is equivalent to the equations 

( 2 8 )  - - u i )  = c, 

where c is some constant. A direct computat ion yields 

are equal. As 

W j .  (~+k -- ~ )  = 2 sin(kr sin((2j + 1 - 2i - k)r 

and, by (25), equation (28) can be rewritten as 

k - 1  

(29) E ti+j sin((2j + 1 - k)r = C, 
j = 0  

where C is another constant.  The sum of the left hand sides of (29) over 

i = 0 , . . . ,  n - 1 is zero, therefore C = 0. One finally obtains the system of linear 

equations on the variables ti: 

k - 1  

(30) E ti+j sin((2j + 1 - k)r = 0, i = 0 , . . . , n  - 1, 
j = 0  

along with (26) and (27). The matr ix  A of system (30) is 

ao a l  . . .  a n - 1  

a n - 1  a o  . . .  a n - 2  

: : " . .  : 

a l  a 2  . . .  a o  

where aj = sin((2j + 1 - k)r for j --- 0 , . . . ,  k - 1 and aj = 0 otherwise. 

To s tudy this system let ( = exp(2r be n-th primitive root of unity, and 

s e t  
n - 1  

O r = E a j ~ J r  , r = 0 , . . . , n -  1. 
j = 0  

Let B be the matr ix  bij = ~i(j-1). Note that  B is non-degenerate. The next 

l emma is verified by a direct computat ion tha t  we omit. 

LEMMA 8.1: One has 

where 

A = B-aDB. 

D = Diag(0~_~, 0~-2, .  �9 �9 0o). 

Next, we need the following result. 
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Proof: 

(32) 

and 

(33) 

LEMMA 8.2: One has 

/ s in(k(r  + 1 ) r  1 ) r  x (v/-L--f( 2 (k 1 ) r r  
(31) 2Or= \ ~ ~ - 1 - ~  - ~ : 2 i - ~  )e  p - - 

where, for r = 1 and r = n - 1, one has 

sin(k(r - 1)r = k. 
sin((r - 1)r 

The real and imaginary parts of 20r are the following sums: 

k-1  k -1  

sin((2j + 1 - k - 2rj)r  + ~ sin((2j + 1 - k + 2rj)r  
j=0  j=0  

k -1  k -1  

c o s ( ( 2 j  + 1 - k - 2 ~ j ) r  - ~ co s ( (2y  + 1 - k + 2 r y ) r  
j=0  j=0  

Let us use the identities 

k--1 
E sin(a + 2j~) = sin(k~) sin(a + (k - 1)~) 
j=o sin/~ 

(34) 

and 

(35)  
k-1 sin(kr cos(a + (k - 1)/~) 
E cos(a + 2j/~) = sin ~ ' 
j=0  

where (34) and (35) are equal to k s i n a  and kcosa ,  respectively, if sinfl = 0. 

Apply (34) and (35) to (32) and (33) with an appropriate choice of a and/~ 
to find that (32) equals 

sin(k(r + 1)r _ sin(k(r - 1)r ( sin((k 1)re) 
\ sin((r + 1)r sin((r - 1)r ] 

and (33) equals 

sin(k@ + 1)r _ sin(k(r - 1)r [ 
c o s ( ( k  - 1)rr 

This is equivalent to the statement of the lemma. | 

Now we can complete the proof of the theorem. We are interested in the sys- 

tem of linear equations ( B - 1 D B ) t  = O, where t- = ( to , . . . ,  tn-1) E C n satisfies 

(26) and (27). These two conditions are equivalent to 

t .  (1 ,~ ,~2 , . . .  , ~ - ~ ) =  O, t .  ( 1 , 1 , . . . , 1 )  = O, 
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that  is, to the condition that  the first and the last components of the vector Bt- 

vanish. Therefore, the dimension of the space of solutions of our system equals 

the number of zeros among the numbers t?l, 02 , . . . ,  On-2. 

By Lemma 8.2, this equals the number of r = 1, 2 , . . . ,  n - 2 such that  

(36) sin(k(r + 1)r = sin(k(r - 1)r 
sin((r + 1)r sin((r - 1)r " 

If r = 1, then (36) becomes sin(2kr = ksin(2r according to Lemma 6 in [1] 

this has no solutions. By elementary trigonometry, for r = 2 , . . . ,  n -  2, equation 

(36) can be rewritten as (24), and this completes the proof. I 

R e m a r k  8.3: Recall that  Theorem 10 provides 1-parameter families of bicycle 

(n, k)-gons for n even and k odd. For such values of n and k, equation (24) 

holds for r = n / 2 :  indeed, r e  = ~r/2 and tan(re)  = tan(krr = co. Likewise, if 

n = 2k, equation (24) holds for every odd r. Note a curious duality between k 

and r in (24). 

9. Conc lus ion :  p r o b l e m s  a n d  con j ec tu r e s  

In conclusion, let us formulate a number of open questions and conjectures on 

bicycle curves and polygons. 

1. Are there non-circular smooth convex plane bicycle curves with the rotation 

numbers p ~ 1/2? Optimistic conjecture: such a curve exists if and only if p 

satisfies equation (2). Pessimistic conjecture: such curves do not exist at all. 

2. Describe solutions to equation (10), other than constant functions and anti- 

periodic functions satisfying a ( x  + ~r) = 7r - a ( x )  (with w = 7r/2)? Optimistic 

conjecture: for every w, satisfying equation (18), there exists a solution obtained 

as a perturbation of a constant function. 

3. Are there non-regular convex bicycle (n, k)-gons unless n is even and k is 

odd or n = 2k? Are these two cases the only ones in which equation (24) has a 

solution? 

4. Find analogs of the results of this paper in the spherical and hyperbolic 

metrics. 

5. Finally, investigate the three other geometric problems, mentioned at the 

end of Introduction. 

ADDED IN PROOF: After the completion and submission of this paper, I learned 

about other works related to the problems discussed here. Problem 19 in the 
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Scottish Book [14], due to S. Ulam, asks whether a sphere is the only solid of uni- 

form density that  will float in equilibrium in every position. The 2-dimensional 

version of this problem was considered by Auerbaeh [11]. One of his main results 

is that  this flotation problem is equivalent to our problem 2: in the terminol- 

ogy of the present paper, if a 2-dimensional body of uniform clensity floats in 

equilibrium in all positions then its boundary is a bicycle curve (the role of the 

rotation number is played by the density of the body). Auerbach also discusses 

non-round 2-dimensional bodies of density 1/2 that float in equilibrium; they 

are bounded by the curves discussed in Section 3 above. In fact, such curves 

were described earlier by Zindler [16], and in [11] they are called Zindler curves. 

Recent papers [12, 13] are also devoted to this flotation problem; in the termi- 

nology of the present paper, the main result of [12] is that  there are no bicycle 

curves, other than circles, with rotation numbers 1/5 and 2/5 (in [12, 13], such 

curves with a rational rotation number are called Zindler carrousels). The proof 

in [12] is computer-assisted. An earlier work by Salkowski [15] claimed much 

more: in the terminology of tim present paper, there are no bicycle curves, other 

than circles, with rational rotation numbers; in my opinion, the proof in [15] is 

not satisfactory. 
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